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Many	 mechanical	 systems	 with	 elastic	 and	 damping	 properties	 are	 prone	 to	
resonant	phenomena	at	natural	frequencies	under	the	action	of	external	forces.	
Resonance	phenomena	can	also	be	preserved	in	control	systems	of	such	objects	
closed	by	negative	feedback,	which	reduces	the	quality	of	the	functioning	of	these	
systems.	The	paper	under	review	deals	with	the	practically	important	problem	of	
suppressing	 oscillations	 at	 natural	 frequencies	 in	 control	 systems	 for	 a	 linear	
oscillator,	 which	 is	 traditionally	 considered	 a	 dynamic	 object	 described	 by	 a	
second-order	 differential	 equation	 with	 complex	 roots	 of	 the	 characteristic	
equation.	The	focus	of	the	work	is	the	question	of	the	roughness	of	the	system	in	
relation	 to	 inaccurate	 knowledge	 of	 the	 resonant	 frequency	 of	 the	 controlled	
object	(which	is	typical	for	many	technical	applications).	

	
Abstract		

Banyak	 sistem	 mekanis	 dengan	 sifat	 elastis	 dan	 redaman	 yang	 rentan	 terhadap	 fenomena	 resonansi	 pada	
frekuensi	alami	di	bawah	aksi	gaya	eksternal.	Fenomena	resonansi	juga	dapat	dipertahankan	dalam	sistem	kontrol	
benda-benda	yang	ditutup	oleh	umpan	balik	negatif,	yang	mengurangi	kualitas	fungsi	sistem	ini.	Makalah	yang	
sedang	ditinjau	ini	membahas	masalah	praktis	yang	penting	untuk	menekan	osilasi	pada	frekuensi	alami	dalam	
sistem	kontrol	untuk	osilator	linier,	yang	secara	tradisional	dianggap	sebagai	objek	dinamis	yang	dijelaskan	oleh	
persamaan	diferensial	orde	dua	dengan	akar-akar	kompleks	dari	persamaan	karakteristik.	Fokus	dari	pekerjaan	
ini	adalah	pertanyaan	tentang	kekasaran	sistem	dalam	kaitannya	dengan	pengetahuan	yang	tidak	akurat	tentang	
frekuensi	resonansi	dari	objek	yang	dikendalikan	(yang	merupakan	tipikal	untuk	banyak	aplikasi	teknis).		

Kata	kunci:	Sistem	mekanis,	Sifat	elastis	dan	redaman,	Frekuensi	alami,	Matlab.	

	
INTRODUCTION	

Many	mechanical	systems	with	elastic	and	damping	properties	are	prone	to	resonant	phenomena	at	
natural	frequencies	under	the	action	of	external	forces.	Resonance	phenomena	can	also	be	preserved	in	
control	systems	of	such	objects	closed	by	negative	feedback,	which	reduces	the	quality	of	the	functioning	
of	these	systems.	The	paper	under	review	deals	with	the	practically	important	problem	of	suppressing	
oscillations	 at	 natural	 frequencies	 in	 control	 systems	 for	 a	 linear	 oscillator,	 which	 is	 traditionally	
considered	a	dynamic	object	described	by	a	second-order	differential	equation	with	complex	roots	of	
the	characteristic	equation.	The	 focus	of	 the	work	 is	 the	question	of	 the	 roughness	of	 the	 system	 in	
relation	to	inaccurate	knowledge	of	the	resonant	frequency	of	the	controlled	object	(which	is	typical	for	
many	technical	applications).	

As	an	example,	here	we	can	cite	the	problem	of	controlling	an	object	with	pronounced	oscillatory	
properties,	 when	 the	 parameters	 of	 the	 object,	 for	 one	 reason	 or	 another,	 may	 deviate	 from	 the	
calculated	values.	Attempts	to	obtain	under	these	conditions	in	a	closed	system	the	aperiodic	character	
of	transient	processes	with	the	help	of	the	corresponding	desired	arrangement	of	roots,	for	example,	the	
binomial	,	are	unlikely	to	be	successful.	In	a	real	closed	system,	fluctuations	will	inevitably	occur.	In	this	
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case,	 it	may	even	turn	out	 that	setting	 the	desired	 location	with	a	more	stable	operation	of	a	closed	
system,	i.e.,	operation	without	abrupt	changes	in	processes	and	their	quality	indicators.	
Formulation	of	the	problem	
As	a	control	object,	we	consider	a	second-order	oscillatory	system,	which	is	under	the	influence	of	the	
control	and	the	perturbing	forces	𝐹!:		

𝑚�̈� 	+ 	𝑏�̇� 	+ 	𝑐𝑦	 = 	𝐹	 +	𝐹!															(1)	
where	m	is	the	mass;	b	is	the	coefficient	of	viscous	friction;	c	-	hardness.	

We	bring	equation	(1)	to	the	standard	form:	
�̈� 	+ 	2𝜉	𝜔₁�̇� + 𝜔"#𝑦	 = 	𝑢	 + 	𝜑											(2)	

where	𝜔₁	=	1 $
%
	is	the	natural	frequency;	𝜉	=	 &

#√$%
	–	dimensionless	damping	coefficient	(𝜉 < 1);	𝑢	 = 	 (

%
–	

control;	𝜑 = (в
%
-	perturbation.	

The	block	diagram	of	the	control	system	for	the	problem	of	stabilizing	system	(2)	is	shown	in	Fig.1.	
In	accordance	with	equation	(2),	the	calculated	transfer	function	of	the	control	object	has	the	form:	
		𝐺(𝑝) 	= 	 "

)²+#,-₁)+-"#
																										(3)	

We	assume	that	the	calculated	value	without	the	dimensional	damping	coefficient	𝜉	is	equal	to	the	
value	ξ∗ ,	 while	 the	 actual	 value	 of	 the	 coefficient	𝜉 	in	 the	 object	 equation	 (3)	 may	 differ	 from	 the	
calculated	one.	It	is	required	to	build	a	controller	with	a	fixed	setting,	having	a	transfer	function	𝑊(𝑝)	
and	providing	for	a	closed	system:	

-Effective	vibration	stabilization;	
-Low	sensitivity	of	the	properties	of	a	closed	system	to	a	change	in	the	coefficient	𝜉	

	
METHOD	

We	require	that	the	desired	transfer	function	of	the	closed	system	has	the	form:	

𝐻0(𝑝) = 1#
)²+1")+1#

																								(4)	
where	the	coefficients	of	the	characteristic	polynomial	𝛼"	and	𝛼#	determine	the	desired	location	of	

the	roots.	
The	 transfer	 function	 (4)	 has	 the	 minimum	 order	𝑛	 = 	2 ,	 which	 ensures	 the	 physical	

realizability	of	the	controller,	and	satisfies	the	astatism	condition	𝐻!(0) = 1.	To	determine	the	
transfer	 function	 of	 the	 controller	 W(p),	 we	 use	 the	 dynamic	 compensation	 method.	
Substituting	expressions	(3)	and	(4)	into	the	formula:	𝑊(𝑝) = "!

#$%&"!'
	we	get:	

𝑊(𝑝) = 𝛼#
)#+#,-")+-"#

()+1"))
																							(5)	

To	take	into	account	the	influence	of	the	perturbation	𝜑,	we	write	the	differential	equation	
of	the	closed	system:	

𝑄(𝑠)𝑦(𝑡) 	= 	𝛼((𝑠( + 2𝜉𝜔%𝑠 + 𝜔%()𝑦∗(𝑡) + (𝑠 + 𝛼%)𝑠𝜑(𝑡)																											(6)	
with	𝑄(𝑠) 	=	 (𝑠# + 𝛼"𝑠 + 𝛼# )(𝑠# + 2𝜉𝜔"𝑠 + 𝜔"# )	 –	 characteristic	 polynomial	 of	 a	 closed	 system	 at	
calculated	values	of	parameters.	

Equation	(6)	shows	that	for	the	calculated	values	of	the	parameters,	the	properties	of	the	
closed	system	according	to	the	assignment	y^*(t)	are	determined	by	the	transfer	function	(4).	
At	 the	same	time,	 the	 form	of	 the	 transfer	 function	of	 the	closed	system	with	respect	 to	 the	
perturbation:	

𝐻4(𝑝) = 	 ()+1"))
()#+1")+1#)5)#+#,-")+-"#6

						(7)	

Shows	that	for	any	limited	perturbation	in	a	closed	system,	oscillations	occur	at	the	natural	
frequency	𝜔%of	the	control	object	(2),	even	if	the	desired	characteristic	polynomial	𝑝(+𝛼%𝑝 +
𝛼(in	(7)	has	real	roots.	
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Note	that	oscillations	in	a	closed	system	will	also	take	place	under	nonzero	initial	conditions,	even	
if	there	is	no	perturbation	𝜑.	

A	similar	result,	characteristic	of	the	dynamic	compensation	method,	has	already	been	discussed.	
Let	us	 consider	 the	behavior	of	 a	 closed	 system	with	 controller	 (5)	when	 the	parameters	of	 the	

control	object	deviate	from	the	calculated	values.	
If	the	real	transfer	function	of	the	object	has	the	form.	

𝐺>(𝑝) 	= "
)#+#,7-8")+-8"#

																							(8)	

Then	for	a	closed	system	instead	of	(4)	we	get:	

𝐻?(𝑝) 	= 1#5)#+#,-")+-"#6
97())

																(9)	

where	𝑄](𝑝) = 	 ^𝑝( + 2𝜉_�̀�%𝑝 + �̀�%(a(𝑝 + 𝛼%)𝑝 + 𝛼((𝑝( + 2𝜉𝜔%𝑝 + 𝜔%()	

Analysis	of	the	characteristic	polynomial	𝑄>(𝑝)shows	that	small	deviations	of	the	parameters	∆𝜉 =
𝜉A − 𝜉 	and	∆𝜔" = 𝜔C" −𝜔" 	will	 not	 lead	 to	 abrupt	 changes	 in	processes	 in	 a	 closed	 system.	However,	
oscillations	at	natural	frequency	𝜔"	are	still	inevitable.	

	

	
Fig.1.	Block	diagram	of	the	control	system	

	
Fig.2.	Structural	diagram	of	control	with	prefilter	

	
	
	
RESULTS	AND	DISCUSSION	

As	a	 control	 object,	we	 consider	 a	 second-order	oscillatory	 system	 (2).	We	will	 assume	 that	 the	
dimensionless	damping	coefficient𝜉,	whose	nominal	value	is	equal	to	𝜉∗	(𝜉∗<1),	can	vary	within	certain	
limits.	It	is	required	to	find	the	transfer	function	𝑊(𝑝)	of	the	controller,	which	provides	for	the	control	
system,	the	block	diagram	of	which	is	shown	in	Fig.1,	low	sensitivity	with	respect	to	small	deviations	of	
the	parameter	𝜉of	the	control	object	from	the	nominal	value	𝜉∗.	

.	 Let	us	 first	 consider	an	auxiliary	problem	of	optimal	 stabilization	of	 a	 second-order	oscillatory	
system	with	respect	to	the	integral	quadratic	performance	index	of	the	type:	
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𝐽 = ∫ (𝑥":𝑄𝑥 + 𝑢:𝑅𝑢)𝑑𝑡
;
< 															(10)	

This	problem	is	necessary	to	justify	the	choice	of	weight	matrices	𝑄	and	𝑅	from	(10).	
Let	us	write	the	equation	of	the	control	object	(2)	at	the	nominal	value	of	the	parameter𝜉 = 𝜉∗	in	the	

state	variables𝑥" = 𝑦, 𝑥# = �̇�:	

K
�̇�" = 𝑥#

�̇�# = −𝜔"#𝑥" − 2𝜉∗𝜔"𝑥# + 𝑢 + 𝜑
	(11)	

Optimality	will	be	understood	in	the	sense	of	the	minimum	of	the	integral	of	the	weighted	sum	of	
the	oscillation	energy	and	the	energy	spent	on	control:																			

𝐽 = ∫ (𝜔"#𝑥"# + 𝑥## + 𝑟𝑢#)𝑑𝑡
;
< 										(12)	

where	the	weighting	factor	𝑟 > 0	is	not	yet	fixed.	
The	initial	and	final	conditions	for	the	stabilization	problem	have	the	form:	

𝑥"(0) = 𝑥"<, 𝑥#(0) = 𝑥#<, 𝑥"; = 0, 𝑥#; = 0	
The	optimization	problem	(11),	(12)	will	be	solved	by	the	Lagrange	method.	Using	the	factors	𝜆"	

and	𝜆#,	we	compose	an	auxiliary	functional:	
𝐽A = ∫ [𝜔"#𝑥"# + 𝑥## + 𝑟𝑢# + 𝜆"(�̇�" − 𝑥#) + 𝜆#(�̇�# +𝜔"#𝑥" + 2𝜉∗𝜔"𝑥# − 𝑢)]

;
< 𝑑𝑡																													(13)	

The	necessary	condition	for	the	extremum	of	the	functional	(13),	which	consists	in	the	vanishing	of	
its	first	variation,	leads	to	the	system	of	Euler-Lagrange	equations:	

⎩
⎪
⎨

⎪
⎧

�̇�" = 𝑥#
�̇�# =		−𝜔"#𝑥" − 2𝜉∗𝜔"𝑥# + 𝑢

�̇�" = 2𝜔"#𝑥"# +𝜔"#𝜆#
�̇�# = 2𝑥# − 𝜆" + 2𝜉∗𝜔"𝜆#	

2ru − 𝜆#	 = 0

					(14)	

From	the	last	equation	of	system	(14),	which	is	the	condition	>?
@

>A
=0	that	the	partial	derivative	of	the	

functional		𝐽Avanishes	with	respect	to	the	explicitly	incoming	control	𝑢	,	we	find:	
𝑢 = B#

#C
																										(15)																																																																				

Taking	into	account	(15),	we	rewrite	the	remaining	four	equations	from	(14)	in	the	form:	

⎩
⎪
⎨

⎪
⎧

�̇�% = 𝑥(
�̇�( = −𝜔%(𝑥% − 2𝜉∗𝜔%𝑥( +

%
(*
𝜆(

�̇�% = 2𝜔%(𝑥%( + 𝜔%(𝜆(
�̇�( = 2𝑥( − 𝜆% + 2𝜉∗𝜔%𝜆(	

							(16)	

We	write	the	matrix	A	of	system	(16):	

														𝐴 =

⎣
⎢
⎢
⎢
⎡
0 1 0 			0

−𝜔%( −2𝜉∗𝜔% 	0 %
(*

2𝜔%(
0

0
2

										0
							−1

𝜔%(
2𝜉∗𝜔%⎦

⎥
⎥
⎥
⎤
	(17)		

And	its	characteristic	equation:	

								det[ 𝜈𝐸 − 𝐴 ]=	 det

⎣
⎢
⎢
⎢
⎡

𝜈 −1 0 												0
𝜔%( 		𝜈 + 2𝜉∗𝜔% 	0 &%

(*

−2𝜔%(
0

		0
−2

									𝜈
										1

−𝜔%(
𝜈 − 2𝜉∗𝜔%⎦

⎥
⎥
⎥
⎤
= 𝜈, + 2𝐵𝜈( + 𝐶 = 0																																							

(18)	

where	𝐵 = 𝜔%((1 − 2𝜉∗) −
%
(*
	,	 	С= -"#

*
+ 𝜔%, > 0	-coefficients	depending	on	the	parameters	

𝜉∗and	𝜔%	of	the	control	object	and	the	value	of	the	weight	factor	𝑟	from	the	functional	(4).		
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Let	us	return	to	the	block	diagram	of	the	control	system	shown	in	Fig.	2.	Let	us	find	the	transfer	
function	𝑾(𝒑)	of	a	physically	realizable	controller	of	the	minimum	order,	which	provides	for	the	closed	
system	 astatism	 of	 the	 first	 order	 and	 the	 desired	 characteristic	 polynomial	 (18).	 The	 solution	 is	
determined	by	the	same	formulas	(4),	 (5)	as	 in	section	3,	 in	which	the	parameters	𝜶𝒊take	the	values	
𝜶𝒊∗(𝒊 = 𝟏, 𝟒).	

		Recall	that	in	section	3	the	controller	(4)	was	tuned	in	accordance	with	the	standard	(binomial)	
form	of	the	fourth	order	(6),	and	in	the	considered	example,	in	accordance	with	the	polynomial	(14)	
calculated	by	the	criterion	(15)	minimizing	not	only	the	main	motion	(	for	𝜉 = 𝜉∗),	but	also	for	additional	
motion	(for	𝜉 ≠ 𝜉∗).	

Note	that	 in	both	cases	 it	 is	expedient	to	 introduce	a	prefilter	with	the	transfer	function	into	the	
control	system:	

L(p) = .#
.$/#0."/0.#

																															(19)																																				

Excluding	 the	 influence	 of	 the	 numerator	 of	 the	 transfer	 function	 of	 the	 controller	 (5)	 on	 the	
indicators	of	the	quality	of	transient	processes.	The	corresponding	block	diagram	is	shown	in	Fig.	2.	In	
this	case,	the	differential	equation	of	the	closed	system	will	have	the	form:	

𝑄(𝑠)𝑦(𝑡) 	= 𝛼,𝑦∗ + (𝑠 + 𝛾)𝑠𝜑(𝑡)					(20)											
where	𝑄(𝑠) = 	 𝑠, + 𝛼%𝑠1 + 𝛼(𝑠( + 𝛼1𝑠 + 𝛼,-characteristic	polynomial	of	a	closed	system.	
Thus,	for	the	control	system,	the	block	diagram	of	which	is	shown	in	Fig.	2,	three	options	for	setting	

up	a	regulator	with	a	gear	ratio	(5)	are	considered.	 In	all	cases,	 the	differential	equation	of	a	closed	
system	 has	 the	 same	 form	 (20).	 For	 different	 options	 for	 adjusting	 the	 controller,	 the	 following	
characteristic	polynomials	are	obtained:	

-Adjustment	by	compensation	method:	
𝑄(𝑠) = (	𝑠( + 2𝜉∗𝜔%𝑠 + 𝜔%()(𝑠( + 𝛼%𝑠 + 𝛼()																																																									(21)	
Recall	the	parameters	𝛼E∗	remained	free	and	it	was	recommended	to	use	standard	forms	(binomial,	

Butterworth,	etc.)	to	determine	them.		

Let	us	reduce	the	polynomials	(21)	to	a	common	geometric	mean	root	ω2 = ~ω%�γ( + δ(	
and	find	their	roots	with	the	above	numerical	data.	In	this	case,	we	choose	the	binomial	form	as	
the	 standard	 one	 for	 the	 first	 two	 cases.	 The	 options	 for	 the	 location	 of	 the	 roots	 of	 the	
characteristic	polynomial	of	a	closed	system	are	shown:	

	𝜆%,( = (−3 ± 𝑗29,85)	1 𝑠⁄ 	,		𝜆1,, = −35,68	 1 𝑠⁄ 																																							(22)	
Let	us	present	the	main	results	of	computer	simulation	below:	
With	𝜉∗ = 0,15	(Fig.3)	
Transfer	function:	

																					1.146e006	
----------------------------------------------------	
s^4	+	80.35	s^3	+	2182	s^2	+	7.185e004	s	+	1.146e006	
	Roots:		
	-35.9298	+	8.6759i	
	-35.9298	-	8.6759i	
		-4.2464	+28.6430i	
		-4.2464	-28.6430i	

With𝜉∗ = 0,1	(Fig.4)	
Transfer	function:	

																					1.146e006	
----------------------------------------------------	
s^4	+	77.35	s^3	+	2179	s^2	+	7.185e004	s	+	1.146e006	
		Roots:		
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-3.0000	+29.8496i	
		-3.0000	-29.8496i	
	-35.6762										
		-35.6762	

	

With	𝜉∗ = 0,05	(Fig.5)	

Transfer	function:	
																					1.146e006	
----------------------------------------------------	
s^4	+	74.35	s^3	+	2176	s^2	+	7.185e004	s	+	1.146e006	
Roots:	
		-1.6357	+30.8712i	
		-1.6357	-30.8712i	
	-43.5732											
	-27.5077	

	
Fig.3.	Results	of	computer	simulation	(𝝃∗ = 𝟎, 𝟏𝟓	)	

	
Fig.4.	Results	of	computer	simulation	(𝝃∗ = 𝟎, 𝟏	)	
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Fig.5.	Results	of	computer	simulation	(𝝃∗ = 𝟎, 𝟎𝟓	)	

A	comparative	analysis	of	 the	variants	 shows	 that	 the	 first	variant	has	 the	high	parametric	
sensitivity,	for	which	the	characteristic	polynomial	(21)	does	not	take	into	account	the	properties	of	the	
control	object.	
	
CONCLUSION	

In	this	study,	the	controller	calibration	method	has	been	analyzed	for	the	problem	of	
linear	 oscillator	 stability.	 It	 has	 been	 shown	 that	 the	 sensitivity	 function	method	has	 a	 low	
sensitivity	 to	 changes	 in	 the	 parameters	 of	 the	 linear	 oscillator.	 The	 implementation	 of	 the	
method	 is	 performed	using	 the	MATLAB	 software	 system	on	 the	 canonical	 quadratic-linear	
optimization	problem.	
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