Image Classification of Meat Using Support Vector Machine Method

Authors

  • Yuli Christyono Diponegoro University, Semarang, Indonesia Author
  • Sukiswo Diponegoro University, Semarang, Indonesia Author

DOI:

https://doi.org/10.62504/jimr563

Keywords:

Classification, SVM, Confusion matrix

Abstract

Meat is one of the essential food ingredients in meeting the nutritional needs. The current problem lies in the consumers' lack of knowledge on how to differentiate between pork, beef, goat, and lamb meat. This is because when the meat is already cut, their appearances may seem similar at first glance. Many consumers are unaware of the practice of mixing different types of meat for consumption. One way to classify animal meat is by using image processing. In this research, an image processing system is created to classify meat, specifically pork, beef, goat, and lamb. Support Vector Machine (SVM) is a development of Machine Learning that can be used in classifying images into specific classes. SVM method as a classifier is performed using a confusion matrix. The test results show the highest accuracy value obtained in the class of Goat Meat 91.4%, the highest precision in the class of goat meat 80%, the highest recall in the class of beef 81.3%, and the highest F1-score in the class of beef 0.76.

Downloads

Download data is not yet available.

References

Arsilo, L., Ma’mur, K. (2022). Implementasi Sistem Klasifikasi Analisa Tekstur Dan Normalisasi Warna Terhadap Daging Sapi Dan Daging Babi Menggunakan Metode K-Means. OKTAL, 01(03), 216-224. https://journal.mediapublikasi.id/index.php/oktal/article/view/45

Indriani, N., Rainarli, E., Dewi, K. (2017) Peringkasan dan Support Vector Machine pada Klasifikasi Dokumen., Infotel, 9(04). https://doi.org/10.20895/infotel.v9i4.312

Adi, K.N., Isnanto,R. (2016) Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM). JSINBIS, 6(1) https://doi.org/10.21456

Tineges, R.,Triayudi, A., Sholihati, I.D. (2020). Analisis Sentimen Terhadap Layanan Indihome Berdasarkan Twitter Dengan Metode Klasifikasi Support Vector Machine (SVM). Media Informatika Budidarma. 4(3) 650-658, http://dx.doi.org/10.30865/mib.v4i3.2181

Lihayati, N., Pawening, R.E., Furqan, M. (2016). Klasifikasi Jenis Daging Berdasarkan Tekstur Menggunakan Metode Gray Level Co-ocurent Matrix, Prosiding SENTIA, 2016.

Puspaningrum, N.A.S., Aldino, A.A. (2021). Perbandingan Hasil Klasifikasi Jenis Daging Menggunakan Ekstraksi Ciri Tekstur Gray Level Co-occurrence Matrices (GLCM) Dan Local Binary Pattern (LBP). SMATIKA, 11(01) https://jurnal.stiki.ac.id/index.php/SMATIKA/article/download/572/399

Widayani, W., dan Harliana. (2021). Perbandingan Kernel Support Vector Machine Dalam Melakukan Klasifikasi Penundaan Biaya Kuliah Mahasiswa. Sains dan Informatika, 7(1), 20-27, https://jsi.politala.ac.id/index.php/JSI/article/download/268/141

Muslim, M.A., Listiana, A.(2017). Penerapan Adaboost Untuk Klasifikasi Support Vector Machine Guna Meningkatkan Akurasi Pada Diagnosa Chronic Kidney Disease. Prosiding Snatif . https://jurnal.umk.ac.id/index.php/SNA/article/view/1463

Huaturuk, N.R.S., Rahmadani, R., Januarita, D. (2018). Komparasi Akurasi Naïve Bayes dan Support Vector Machine (SVM) untuk Rekomendasi Produk in Fashion Dress. CENTIVE Conference Proceedings, 1(1). 2018. https://conferences.ittelkom-pwt.ac.id/index.php/centive/article/view/30

Published

06-06-2024

Issue

Section

Articles

How to Cite

Image Classification of Meat Using Support Vector Machine Method. (2024). Journal of International Multidisciplinary Research, 2(6), 200-204. https://doi.org/10.62504/jimr563

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>