Identification of Flood Prone Areas in Sumatra Barat Province Using Remote Sensing Data and Geographic Information System Based on Machine Learning
DOI:
https://doi.org/10.62504/3rk53v16Keywords:
Flood, Remote Sensing, Machine Learning, Geographic Information SystemAbstract
This research aims to identify flood-prone areas in West Sumatra Province using remote sensing data and Machine Learning-based Geographic Information System. By utilizing variables such as distance from the river, Normalized Difference Water Index (NDWI), elevation, Topographic Position Index (TPI), Normalized Difference Vegetation Index (NDVI), and Rainfall Data, this research was conducted on the Google Earth Engine platform. This analysis method supports resource optimization, public education, increased environmental safety, and the development of new technologies and research. The results of the research are expected to assist in mitigation and adaptation to future flood disasters, as well as provide more accurate and comprehensive insights for local governments, disaster management agencies, and communities. With this approach, it is expected to reduce flood risk and increase community resilience to natural disasters.
Downloads
References
Agustina, Diah. 2017. ‘Analisis Banjir Dengan Menggunakan Citra Satelit Multilevel Di Kecamatan Rengel Kabupaten Tuban’. Institut Teknologi Sepuluh November.
Aziza, S.N., Somantri, L., Setiawan, I. 2021. ‘Analisis Pemetaan Tingkat Rawan Banjir Di Kecamatan Bontang Barat Kota Bontang Berbasis Sistem Informasi Geografis’. Jurnal Pendidikan Geografi Undiksha 9(2): 109–20.
BNPB. 2023. Indeks Resiko Bencana Indonesia. Jakarta: Badan Nasional Penanggulangan Bencana.
Fhirlian Rizqi Utama. 2024. ‘Banjir Lahar Dan Longsor Sumatra Barat: Korban Jiwa Capai 50 Orang, Pemerintah Upayakan Penanganan Terbaik’. BNPB: 1. https://bnpb.go.id/berita/update-banjir-lahar-dan-longsor-sumatra-barat-korban-jiwa-capai-50-orang-pemerintah-upayakan-penanganan-terbaik (May 15, 2024).
Gorelick, Noel et al. 2017. ‘Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone’. Remote Sensing of Environment 202: 18–27. https://doi.org/10.1016/j.rse.2017.06.031.
Kodoatie, R. J. 2021. Rekayasa Dan Manajemen Banjir Kota. Penerbit Andi.
Latue, P. C., & Rakuasa, H. 2032. ‘Identification of Flood-Prone Areas Using the Topographic Wetness Index Method in Fena Leisela District, Buru Regency’. Journal Basic Science and Technology 12(2).
Latue, P. C., Imanuel Septory, J. S., Somae, G., & Rakuasa, H. 2023. ‘Pemodelan Daerah Rawan Banjir Di Kecamatan Sirimau Menggunakan Metode Multi-Criteria Analysis (MCA)’. Jurnal Perencanaan Wilayah Dan Kota 18(1): 10–17.
Manakane, S. E., Latue, P. C., Somae, G., & Rakuasa, H. 2023. ‘Flood Risk Modeling in Buru Island, Maluku Province, Indonesia Using Google Earth Engine: Pemodelan Risiko Banjir Di Pulau Buru, Provinsi Maluku, Indonesia Dengan Menggunakan Mesin Google Earth’. MULTIPLE: Journal of Global and Multidisciplinary 1(2): 80–87.
Muhammad Reza Ilham Taufani. 2024. ‘Daftar Bencana Alam Di RI, Termasuk Banjir Bandang Sumatera Barat’. CNBC Indonesia: 1. https://www.cnbcindonesia.com/research/20240513125143-128-537587/daftar-bencana-alam-di-ri-termasuk-banjir-bandang-sumatera-barathttps://www.cnbcindonesia.com/research/20240513125143-128-537587/daftar-bencana-alam-di-ri-termasuk-banjir-bandang-sumatera-ba (May 15, 2024).
Muin, A., & Rakuasa, H. 2023a. ‘Evaluasi Rencana Tata Ruang Wilayah Kota Ambon Berdasarkan Aspek Kerawanan Banjir’. ULIL ALBAB : Jurnal Ilmiah Multidisiplin 2(5): 1727–1738.
———. 2023b. ‘Pemetaan Daerah Rawan Banjir Di Desa Lokki Kecamatan Huamual Kabupaten Seram Bagian Barat.’ Gudang Jurnal Multidisiplin Ilmu 1(2): 47–52.
Muin, A., & Rakuasa, H. 2023c. ‘Pemanfaat Geographic Artificial Intelligence (Geo-AI) Untuk Identifikasi Daerah Rawan Banjir Di Kota Ambon’. Gudang Jurnal Multidisiplin Ilmu 1(2): 58-63.
Muin, A., Somae, G., & Rakuasa, H. 2023. ‘Analisis Potensi Genangan Banjir Di Kecamatan Siwalalat, Kabupaten Seram Bangian Timur Berdasarkan Topographic Wetness Index’. ULIL ALBAB: Jurnal Ilmiah Multidisiplin 2(5): 1800–1806.
Onisimo Muntaga, Lalit Kumar. 2019. ‘Google Earth Engine Applications’. remotesensing: 11–14.
Rahman, Mahfuzur et al. 2019. ‘Flood Susceptibility Assessment in Bangladesh Using Machine Learning and Multi-Criteria Decision Analysis’. Earth Systems and Environment 3(3): 585–601. http://link.springer.com/10.1007/s41748-019-00123-y.
Rakuasa, H., Helwend, J. K., & Sihasale, D. A. 2022. ‘Pemetaan Daerah Rawan Banjir Di Kota Ambon Menggunakan Sistim Informasi Geografis’. Jurnal Geografi: Media Informasi Pengembangan dan Profesi Kegeografian 19(2): 73–82.
Rakuasa, H., Somae, G., & Latue, P. C. 2023. ‘Pemetaan Daerah Rawan Banjir Di Desa Batumerah Kecamatan Sirimau Kota Ambon Menggunakan Sistim Informasi Geografis’. ULIL ALBAB: Jurnal Ilmiah Multidisiplin 2(4): 1642–53.
Rakuasa, H., Wahab, W. A., Kamiludin, K., Jaelani, A., Ramdhani, R., & Rinaldi, M. 2023. ‘Pemetaan Genangan Banjir Di Jalan TB. Simatupang, Jakarta Selatan Oleh Unit Pengelola, Penyelidikan, Pengukuran Dan Pengujian (UP4) Dinas Sumber Daya Air DKI Jakarta’. Jurnal Altifani Penelitian dan Pengabdian kepada Masyarakat 3(2): 288–95.
Rakuasa, H. 2023. ‘Spatial Modeling of Flood Prone Areas in Huamual Sub-District Seram Bagian Barat Regency Indonesia’. Journal of Geographical Sciences and Education 1(2): 47–57.
Rakuasa, Heinrich, and Philia Christi Latue. 2023. ‘ANALISIS SPASIAL DAERAH RAWAN BANJIR DI DAS WAE HERU, KOTA AMBON’. Jurnal Tanah dan Sumberdaya Lahan 10(1): 75–82. https://jtsl.ub.ac.id/index.php/jtsl/article/view/845.
Sitorus, I. H. O., Bioresita, F., & Hayati, N. 2021. ‘Analisa Tingkat Rawan Banjir Di Daerah Kabupaten Bandung Menggunakan Metode Pembobotan Dan Scoring.’ Jurnal Teknik ITS 10(1): C14-C19.
Sugandhi, N., & Rakuasa, H. 2023. ‘Utilization of Geogle Earth Engine for Flood Hazard Analysis in DKI Jakarta Province’. Jurnal Riset Multidisiplin dan Inovasi Teknologi 1(2): 40–49.
Sugandhi, N., Rakuasa, H., Zainudin, Z., Abdul Wahab, W., Kamiludin, K., Jaelani, A., Ramdhani, R., & Rinaldi, M. 2023. ‘Pemodelan Spasial Limpasan Genangan Banjir Dari DAS Ciliwung Di Kel. Kebon Baru Dan Kel. Bidara Cina DKI Jakarta’. ULIL ALBAB : Jurnal Ilmiah Multidisiplin 2(5): 1685–1692.
Wang, Jingming et al. 2023. ‘Flood Monitoring in the Middle and Lower Basin of the Yangtze River Using Google Earth Engine and Machine Learning Methods’. ISPRS International Journal of Geo-Information 12(3): 129. https://www.mdpi.com/2220-9964/12/3/129.
Yefta Christopherus Asia Sanjaya, Ahmad Naufal Dzulfaroh. 2024. ‘UPDATE Banjir Sumbar: 57 Orang Meninggal, 32 Warga Dilaporkan Hilang’. Kompas.Com: 2. https://www.kompas.com/tren/read/2024/05/15/084500565/update-banjir-sumbar--57-orang-meninggal-32-warga-dilaporkan-hilang?page=2 (May 15, 2024).
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Heinrich Rakuasa (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.